Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 72, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504331

RESUMO

DANCE is the first standard, generic, and extensible benchmark platform for accessing and evaluating computational methods across the spectrum of benchmark datasets for numerous single-cell analysis tasks. Currently, DANCE supports 3 modules and 8 popular tasks with 32 state-of-art methods on 21 benchmark datasets. People can easily reproduce the results of supported algorithms across major benchmark datasets via minimal efforts, such as using only one command line. In addition, DANCE provides an ecosystem of deep learning architectures and tools for researchers to facilitate their own model development. DANCE is an open-source Python package that welcomes all kinds of contributions.


Assuntos
Benchmarking , Aprendizado Profundo , Humanos , Algoritmos , Biblioteca Gênica , Análise de Célula Única
2.
Commun Biol ; 7(1): 255, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429435

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) via the nicotinamide (NAM) salvage pathway. While the structural biochemistry of eukaryote NAMPT has been well studied, the catalysis mechanism of prokaryote NAMPT at the molecular level remains largely unclear. Here, we demonstrated the NAMPT-mediated salvage pathway is functional in the Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) for the synthesis of NAD+, and the enzyme activity of NAMPT in this bacterium is significantly higher than that of human NAMPT in vitro. Our structural analyses of Xcc NAMPT, both in isolation and in complex with either the substrate NAM or the product nicotinamide mononucleotide (NMN), uncovered significant details of substrate recognition. Specifically, we revealed the presence of a NAM binding tunnel that connects the active site, and this tunnel is essential for both catalysis and inhibitor binding. We further demonstrated that NAM binding in the tunnel has a positive cooperative effect with NAM binding in the catalytic site. Additionally, we discovered that phosphorylation of the His residue at position 229 enhances the substrate binding affinity of Xcc NAMPT and is important for its catalytic activity. This work reveals the importance of NAMPT in bacterial NAD+ synthesis and provides insights into the substrate recognition and the catalytic mechanism of bacterial type II phosphoribosyltransferases.


Assuntos
Niacinamida , Xanthomonas campestris , Humanos , Niacinamida/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Xanthomonas campestris/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Fosforilação
3.
ArXiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37645040

RESUMO

The recent development of multimodal single-cell technology has made the possibility of acquiring multiple omics data from individual cells, thereby enabling a deeper understanding of cellular states and dynamics. Nevertheless, the proliferation of multimodal single-cell data also introduces tremendous challenges in modeling the complex interactions among different modalities. The recently advanced methods focus on constructing static interaction graphs and applying graph neural networks (GNNs) to learn from multimodal data. However, such static graphs can be suboptimal as they do not take advantage of the downstream task information; meanwhile GNNs also have some inherent limitations when deeply stacking GNN layers. To tackle these issues, in this work, we investigate how to leverage transformers for multimodal single-cell data in an end-to-end manner while exploiting downstream task information. In particular, we propose a scMoFormer framework which can readily incorporate external domain knowledge and model the interactions within each modality and cross modalities. Extensive experiments demonstrate that scMoFormer achieves superior performance on various benchmark datasets. Remarkably, scMoFormer won a Kaggle silver medal with the rank of 24/1221 (Top 2%) without ensemble in a NeurIPS 2022 competition. Our implementation is publicly available at Github.

4.
Phytopathology ; 113(10): 1822-1832, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37160665

RESUMO

Ribonucleases (RNases) play critical roles in RNA metabolism and are collectively essential for cell viability. However, most knowledge about bacterial RNases comes from the studies on Escherichia coli; very little is known about the RNases in plant pathogens. The crucifer black rot pathogen Xanthomonas campestris pv. campestris (Xcc) encodes 15 RNases, but none of them has been functionally characterized. Here, we report the physiological function of the exoribonuclease RNase D in Xcc and provide evidence demonstrating that the Xcc RNase D is involved in 5S rRNA degradation and exopolysaccharide (EPS) production. Our work shows that the growth and virulence of Xcc were not affected by deletion of RNase D but were severely attenuated by RNase D overexpression. However, deletion of RNase D in Xcc resulted in a significant reduction in EPS production. In addition, either deletion or overexpression of RNase D in Xcc did not influence the tRNAs tested, inconsistent with the finding in E. coli that the primary function of RNase D is to participate in tRNA maturation and its overexpression degrades tRNAs. More importantly, deletion, overexpression, and in vitro enzymatic analyses revealed that the Xcc RNase D degrades 5S rRNA but not 16S and 23S rRNAs that share an operon with 5S rRNA. Our results suggest that Xcc employs RNase D to realize specific modulation of the cellular 5S rRNA content after transcription and maturation whenever necessary. The finding expands our knowledge about the function of RNase D in bacteria.


Assuntos
Xanthomonas campestris , Xanthomonas campestris/metabolismo , RNA Ribossômico 5S/metabolismo , Ribonuclease III/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Front Psychol ; 14: 1077596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910806

RESUMO

Objective: The psychological problems among Chinese parents of special children (mental retardation, limb disorder, hearing impairment, autism, cerebral palsy and other types) should be paid more attention. The aim of this study was to investigate the association between anxiety, social support, coping style and sleep quality among Chinese parents of special children during the early COVID-19 epidemic, so as to provide more help for the mental health of parents of special children scientifically and effectively. Method: A total of 305 Chinese parents of special children were invited to accomplish four questionnaires. Anxiety was measured by the Self-Rating Anxiety Scale, social support was evaluated by the Perceived Social Support Scale, sleep quality was assessed by the Pittsburgh Sleep Quality Index, and coping style was measured by the Simplified Coping Style Questionnaire. Results: This study revealed that anxiety was positively correlated with sleep quality (p < 0.01) and negatively correlated with social support (p < 0.01) and coping style (p < 0.01). Sleep quality was negatively correlated with social support (p < 0.01), but not significantly correlated with coping style (p > 0.05). Social support was positively correlated with coping style (p < 0.01). The study confirmed that social support had a partial mediating effect on the relationship between anxiety and sleep quality. Conclusion: The anxiety of parents of special children not only directly affects sleep quality, but also indirectly affects sleep quality through social support. Social support can alleviate the impact of anxiety on sleep quality through the mediating role.

6.
Mol Plant Pathol ; 24(3): 232-247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626275

RESUMO

VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.


Assuntos
Xanthomonas campestris , Xanthomonas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Regiões Promotoras Genéticas , Fosforilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Mol Plant Pathol ; 24(1): 44-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36260328

RESUMO

The bacterial pathogens Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) cause leaf blight and leaf streak diseases on rice, respectively. Pathogenesis is largely defined by the virulence genes harboured in the pathogen genome. Recently, we demonstrated that the protein HpaP of the crucifer pathogen Xanthomonas campestris pv. campestris is an enzyme with both ATPase and phosphatase activities, and is involved in regulating the synthesis of virulence factors and the induction of the hypersensitive response (HR). In this study, we investigated the role of HpaP homologues in Xoo and Xoc. We showed that HpaP is required for full virulence of Xoo and Xoc. Deletion of hpaP in Xoo and Xoc led to a reduction in virulence and alteration in the production of virulence factors, including extracellular polysaccharide and cell motility. Comparative transcriptomics and reverse transcription-quantitative PCR assays revealed that in XVM2 medium, a mimic medium of the plant environment, the expression levels of hrp genes (for HR and pathogenicity) were enhanced in the Xoo hpaP deletion mutant compared to the wild type. By contrast, in the same growth conditions, hrp gene expression was decreased in the Xoc hpaP deletion mutant compared to the wild type. However, an opposite expression pattern was observed when the pathogens grew in planta, where the expression of hrp genes was reduced in the Xoo hpaP mutant but increased in the Xoc hpaP mutant. These findings indicate that HpaP plays a divergent role in Xoo and Xoc, which may lead to the different infection strategies employed by these two pathogens.


Assuntos
Oryza , Xanthomonas , Doenças das Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
9.
Mol Plant Pathol ; 23(5): 649-663, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152521

RESUMO

Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions in most bacteria. Comparatively little is known about the mechanism(s) by which single-domain response regulators (SD-RRs), which lack a dedicated output domain but harbour a phosphoryl receiver domain, exert their various regulatory effects in bacteria. Here we have examined the role of the SD-RR proteins encoded by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). We describe the identification and characterization of a SD-RR protein named McvR (motility, chemotaxis, and virulence-related response regulator) that is required for virulence and motility regulation in Xcc. Deletion of the mcvR open reading frame caused reduced motility, chemotactic movement, and virulence in Xcc. Global transcriptome analyses revealed the McvR had a broad regulatory role and that most motility and pathogenicity genes were down-regulated in the mcvR mutant. Bacterial two-hybrid and protein pull-down assays revealed that McvR did not physically interact with components of the bacterial flagellum but interacts with other SD-RR proteins (like CheY) and the subset of DNA-binding proteins involved in gene regulation. Site-directed mutagenesis and phosphor-transfer experiments revealed that the aspartyl residue at position 55 of the receiver domain is important for phosphorylation and the regulatory activity of McvR protein. Taken together, the findings describe a previously unrecognized class of SD-RR protein that contributes to the regulation of motility and virulence in Xcc.


Assuntos
Xanthomonas campestris , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Plantas/metabolismo , Virulência/genética
10.
Mol Plant Pathol ; 22(12): 1574-1586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424610

RESUMO

Bacteria harbour several abundant small DNA-binding proteins known as nucleoid-associated proteins (NAPs) that contribute to the structure of the bacterial nucleoid as well as to gene regulation. Although the function of NAPs as global transcriptional regulators has been comprehensively studied in the model organism Escherichia coli, their regulatory functions in other bacteria remain relatively poorly understood. Xanthomonas campestris pv. campestris (Xcc) is a gram-negative bacterium that causes black rot disease in almost all members of the crucifer family. In previous work, we demonstrated that a Fis homologue protein, which we named Fis-like protein (Flp), contributes to the regulation of virulence, type III secretion, and a series of other phenotypes in Xcc. Here we have examined the role of XC_1355, which is predicted to encode a DNA-binding protein belonging to the HU family herein named HU-like protein (Hlp). We show that mutation of XC_1355 in Xcc reduces the virulence, extracellular polysaccharide production, and cell motility, but has no effect on the production of extracellular enzymes and induction of the hypersensitive response. These data together with transcriptome analysis indicate that hlp is a previously uncharacterized gene involved in virulence that has partially overlapping and complementary functions with flp in Xcc, although the two regulators have opposite effects on the expression of genes involved in type III secretion. The findings add to our understanding of the complex regulatory pathways that act to regulate virulence in Xcc.


Assuntos
Xanthomonas campestris , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação/genética , Fatores de Transcrição/genética , Virulência/genética , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
11.
Nucleic Acids Res ; 49(11): 6511-6528, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34048589

RESUMO

The zinc uptake regulator (Zur) is a member of the Fur (ferric uptake regulator) family transcriptional regulators that plays important roles in zinc homeostasis and virulence of bacteria. Upon zinc perception, Zur binds to the promoters of zinc responsive genes and controls their transcription. However, the mechanism underlying zinc-mediated Zur activation remains unclear. Here we report a 2.2-Å crystal structure of apo Zur from the phytopathogen Xanthomonas campestris pv. campestris (XcZur), which reveals the molecular mechanism that XcZur exists in a closed inactive state before regulatory zinc binding. Subsequently, we present a 1.9-Å crystal structure of holo XcZur, which, by contrast, adopts an open state that has enough capacity to bind DNA. Structural comparison and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses uncover that binding of a zinc atom in the regulatory site, formed by the hinge region, the dimerization domain and the DNA binding domain, drives a closed-to-open conformational change that is essential for XcZur activation. Moreover, key residues responsible for DNA recognition are identified by site-directed mutagenesis. This work provides important insights into zinc-induced XcZur activation and valuable discussions on the mechanism of DNA recognition.


Assuntos
Proteínas de Bactérias/química , Zinco/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Transcrição Gênica , Xanthomonas campestris
12.
Rice (N Y) ; 14(1): 38, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891171

RESUMO

BACKGROUND: Xanthomonas oryzae (Xo) is one of the important pathogenic bacterial groups affecting rice production. Its pathovars Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight and bacterial leaf streak in rice, respectively. Xo infects host plants by relying mainly on its transcription activator-like effectors (TALEs) that bind to host DNA targets, named effector binding elements (EBEs), and induce the expression of downstream major susceptibility genes. Blocking TALE binding to EBE could increase rice resistance to the corresponding Xo. FINDINGS: We used CRISPR/Cas9 to edit the EBEs of three major susceptibility genes (OsSWEET11, OsSWEET14 and OsSULTR3;6) in the rice varieties Guihong 1 and Zhonghua 11. Both varieties have a natural one-base mutation in the EBE of another major susceptibility gene (OsSWEET13) which is not induced by the corresponding TALE. Two rice lines GT0105 (from Guihong 1) and ZT0918 (from Zhonghua 11) with target mutations and transgene-free were obtained and showed significantly enhanced resistance to the tested strains of Xoo and Xoc. Furthermore, under simulated field conditions, the morphology and other agronomic traits of GT0105 and ZT0918 were basically the same as those of the wild types. CONCLUSIONS: In this study, we first reported that the engineering rice lines obtained by editing the promoters of susceptibility genes are resistant to Xoo and Xoc, and their original agronomic traits are not affected.

13.
PLoS One ; 16(1): e0246033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507993

RESUMO

Many animal and plant pathogenic bacteria employ a type three secretion system (T3SS) to deliver type three effector proteins (T3Es) into host cells. Efficient secretion of many T3Es in the plant pathogen Xanthomonas campestris pv. campestris (Xcc) relies on the global chaperone HpaB. However, how the domain of HpaB itself affects effector translocation/secretion is poorly understood. Here, we used genetic and biochemical approaches to identify a novel domain at the C-terminal end of HpaB (amino acid residues 137-160) that contributes to virulence and hypersensitive response (HR). Both in vitro secretion assay and in planta translocation assay showed that the secretion and translocation of T3E proteins depend on the C-terminal region of HpaB. Deletion of the C-terminal region of HpaB did not affect binding to T3Es, self-association or interaction with T3SS components. However, the deletion of C-terminal region sharply reduced the mounts of free T3Es liberated from the complex of HpaB with the T3Es, a reaction catalyzed in an ATP-dependent manner by the T3SS-associated ATPase HrcN. Our findings demonstrate the C-terminal domain of HpaB contributes to disassembly of chaperone-effector complex and reveal a potential molecular mechanism underpinning the involvement of HpaB in secretion of T3Es in Xcc.


Assuntos
Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Xanthomonas campestris/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Proteico
14.
Insect Sci ; 28(2): 315-329, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108430

RESUMO

Rice stripe virus (RSV) is the causative agent of rice stripe disease and is completely dependent on insect vectors for its plant-to-plant transmission. Laodelphax striatellus is the major insect vector for RSV. In this study, we explored the interactions between RSV infection and L. striatellus autophagy, a potential intrinsic antiviral mechanism in insects. We found that L. striatellus autophagic activity did not affect RSV infection; however, the autophagy-related-8 (Atg8) gene significantly enhanced virus infection. During RSV initial infection within the L. striatellus midgut, silencing of Atg8 expression significantly decreased the phosphorylation of c-Jun N-terminal kinase (p-JNK); however, when RSV infection is absent, silencing of Atg8 did not alter p-JNK levels. These results indicated that Atg8 might activate the JNK machinery by allowing more virus infection into cells. We further revealed that Atg8-deficiency significantly decreased RSV accumulation on the surface of the insect midgut epithelial cells, suggesting a receptor trafficking function of the γ-aminobutyric acid receptor-associated protein family. Using the RSV ovary entry as a model, in which vitellogenin receptor (VgR) mediates RSV cell entry, we clarified that Atg8-deficiency decreased the abundance of VgR localizing on the cytomembrane and disturbed the attachment of RSV in the germarium zones. Collectively, these results revealed an autophagy-independent function of L. striatellus Atg8 that enhances RSV initial infection by increasing virus attachment on the infection sites.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Autofagia , Hemípteros/fisiologia , Proteínas de Insetos/genética , Tenuivirus/fisiologia , Animais , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Hemípteros/genética , Proteínas de Insetos/metabolismo
16.
Phytopathology ; 111(7): 1104-1113, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33245253

RESUMO

As with many phytopathogenic bacteria, the virulence of Xanthomonas campestris pv. campestris, the causal agent of black rot disease in cruciferous plants, relies on secretion of a suite of extracellular enzymes that includes cellulase (endoglucanase), pectinase, protease, and amylase. Although the role in virulence of a number of these enzymes has been assessed, the contribution of amylase to X. campestris pv. campestris virulence has yet to be established. In this work, we investigated both the role of extracellular amylase in X. campestris pv. campestris virulence and the control of its expression. Deletion of XC3487 (here renamed amyAXcc), a putative amylase-encoding gene from the genome of X. campestris pv. campestris strain 8004, resulted in a complete loss of extracellular amylase activity and significant reduction in virulence. The extracellular amylase activity and virulence of the amyAXcc mutant could be restored to the wild-type level by expressing amyAXcc in trans. These results demonstrated that amyAXcc is responsible for the extracellular amylase activity of X. campestris pv. campestris and indicated that extracellular amylase plays an important role in X. campestris pv. campestris virulence. We also found that the expression of amyAXcc is strongly induced by starch and requires activation by the global posttranscriptional regulator RsmA. RsmA binds specifically to the 5'-untranslated region of amyAXcc transcripts, suggesting that RsmA regulates amyAXcc directly at the posttranscriptional level. Unexpectedly, in addition to posttranscriptional regulation, the use of a transcriptional reporter demonstrated that RsmA also regulates amyAXcc expression at the transcriptional level, possibly by an indirect mechanism.


Assuntos
Xanthomonas campestris , Amilases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas , Virulência , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
17.
Mol Plant Pathol ; 21(12): 1573-1590, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32969159

RESUMO

Although bacterial small noncoding RNAs (sRNAs) are known to play a critical role in various cellular processes, including pathogenesis, the identity and action of such sRNAs are still poorly understood in many organisms. Here we have performed a genome-wide screen and functional analysis of the sRNAs in Xanthomonas campestris pv. campestris (Xcc), an important phytopathogen. The 50-500-nt RNA fragments isolated from the wild-type strain grown in a virulence gene-inducing condition were sequenced and a total of 612 sRNA candidates (SRCs) were identified. The majority (82%) of the SRCs were derived from mRNA, rather than specific sRNA genes. A representative panel of 121 SRCs were analysed by northern blotting; 117 SRCs were detected, supporting the contention that the overwhelming majority of the 612 SRCs identified are indeed sRNAs. Phenotypic analysis of strains overexpressing different candidates showed that a particular sRNA, RsmU, acts as a negative regulator of virulence, the hypersensitive response, and cell motility in Xcc. In vitro electrophoretic mobility shift assay and in vivo coimmunoprecipitation analyses indicated that RsmU interacted with the global posttranscriptional regulator RsmA, although sequence analysis displayed that RsmU is not a member of the sRNAs families known to antagonize RsmA. Northern blotting analyses demonstrated that RsmU has two isoforms that are processed from the 3'-untranslated region of the mRNA of XC1332 predicted to encode ComEA, a periplasmic protein required for DNA uptake in bacteria. This work uncovers an unexpected major sRNA biogenesis strategy in bacteria and a hidden layer of sRNA-mediated virulence regulation in Xcc.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Pequeno RNA não Traduzido/genética , Xanthomonas campestris/genética , Folhas de Planta/microbiologia , Isoformas de RNA/genética , RNA Mensageiro/genética , Virulência/genética , Xanthomonas campestris/patogenicidade
18.
Mol Microbiol ; 114(5): 870-886, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32757400

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in crucifers. Our previous findings revealed that Xcc can degrade 4-hydroxybenzoic acid (4-HBA) via the ß-ketoadipate pathway. This present study expands on this knowledge in several ways. First, we show that infective Xcc cells induce in situ biosynthesis of 4-HBA in host plants, and Xcc can efficiently degrade 4-HBA via the pobA/pobR locus, which encodes a 4-hydroxybenzoate hydroxylase and an AraC-family transcription factor respectively. Next, the transcription of pobA is specifically induced by 4-HBA and is positively regulated by PobR, which is constitutively expressed in Xcc. 4-HBA directly binds to PobR dimers, resulting in activation of pobA expression. Point mutation and subsequent isothermal titration calorimetry and size exclusion chromatography analysis identified nine key conserved residues required for 4-HBA binding and/or dimerization of PobR. Furthermore, overlapping promoters harboring fully overlapping -35 elements were identified between the divergently transcribed pobA and pobR. The 4-HBA/PobR dimer complex specifically binds to a 25-bp site, which encompasses the -35 elements shared by the overlapping promoters. Finally, GUS histochemical staining and subsequent quantitative assay showed that both pobA and pobR genes are transcribed during Xcc infection of Chinese radish, and the strain ΔpobR exhibited compromised virulence in Chinese radish. These findings suggest that the ability of Xcc to survive the 4-HBA stress might be important for its successful colonization of host plants.


Assuntos
Parabenos/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Fator de Transcrição AraC/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Parabenos/química , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Virulência/genética , Xanthomonas campestris/patogenicidade
19.
Nat Commun ; 11(1): 2794, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493973

RESUMO

All known riboswitches use their aptamer to senese one metabolite signal and their expression platform to regulate gene expression. Here, we characterize a SAM-I riboswitch (SAM-IXcc) from the Xanthomonas campestris that regulates methionine synthesis via the met operon. In vitro and in vivo experiments show that SAM-IXcc controls the met operon primarily at the translational level in response to cellular S-adenosylmethionine (SAM) levels. Biochemical and genetic data demonstrate that SAM-IXcc expression platform not only can repress gene expression in response to SAM binding to SAM-IXcc aptamer but also can sense and bind uncharged initiator Met tRNA, resulting in the sequestering of the anti-Shine-Dalgarno (SD) sequence and freeing the SD for translation initiation. These findings identify a SAM-I riboswitch with a dual functioning expression platform that regulates methionine synthesis through a previously unrecognized mechanism and discover a natural tRNA-sensing RNA element. This SAM-I riboswitch appears to be highly conserved in Xanthomonas species.


Assuntos
RNA de Transferência de Metionina/metabolismo , Riboswitch , S-Adenosilmetionina/metabolismo , Sequência de Bases , Loci Gênicos , Modelos Biológicos , Conformação de Ácido Nucleico , Óperon/genética , Biossíntese de Proteínas , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética
20.
Trends Genet ; 36(6): 442-455, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396837

RESUMO

Because of its ability to find complex patterns in high dimensional and heterogeneous data, machine learning (ML) has emerged as a critical tool for making sense of the growing amount of genetic and genomic data available. While the complexity of ML models is what makes them powerful, it also makes them difficult to interpret. Fortunately, efforts to develop approaches that make the inner workings of ML models understandable to humans have improved our ability to make novel biological insights. Here, we discuss the importance of interpretable ML, different strategies for interpreting ML models, and examples of how these strategies have been applied. Finally, we identify challenges and promising future directions for interpretable ML in genetics and genomics.


Assuntos
Biologia Computacional/métodos , Genética Médica , Genética Populacional , Genoma Humano , Aprendizado de Máquina , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...